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Finite-Element Analysis of Slow-Wave
Schottky Contact Printed Lines

CHING-KUANG TZUANG, STUDENT MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Abstract —Extensive finite-element analyses on MMIC slow-wave
structures with both localized and layered models are presented. Good
agreement is achieved between the data presented here and other theoreti-
cal results and experiments. Higher order elements that improve accuracy
are discussed. The comparative studies for Schottky contact microstrip and
coplanar waveguide with localized and layered models are presented.
Potential applications of the localized models to more general and practical
slow-wave circuits are also discussed.

I. INTRODUCTION

HE ADVANCE in monolithic microwave integrated

circuits (MMIC’s) has led to widespread applications
of microstrip and other planar transmission lines such as
coplanar waveguide (CPW) and coupled microstrip on
semiconductor substrate. In addition to interconnection or
transmission-line applications, this class of transmission
lines can be employed as circuit elements such as phase
shifters, voltage-tunable filters, and voltage-controlled at-
tenuators [1]-[3].

These applications are made possible by the slow-wave
propagation resulting from electron—electromagnetic inter-
action with the lossy semiconductor material. The device
was experimentally studied with metal-insulator—semicon-
ductor (MIS) configurations and with Schottky contact
microstrip or CPW structures [3]-[6] and was theoretically
investigated by a number of techniques, such as spectral-
domain analysis (SDA), the mode-matching method, and
the finite-element method (FEM) [7]-[10] based on MIS or
so-called layered models. However, practical semiconduc-
tor devices such as Schottky contact microstrip or CPW
are certainly not laminated structures. Instead, they both
have localized depletion regions on semiconductors. The
effects of these localized depletion regions have never been
discussed. It is plausible to contemplate that the layered
model commonly used for the analysis may not correctly
describe the actual field distributions in the structure with
localized depletion regions.

In this paper, the finite-element method based on the
E,— H, formulation [9], [11] is used for a variety of slow-
wave structures which can best be described by the local-
ized model. In conjunction with this study, use of higher
order elements, e.g., quadratic isoparametric elements, is
discussed and its results are presented.
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Fig. 1. Localized depletion model for Schottky contact microstrip.
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Fig. 2. Localized depletion model for Schottky contact coplanar wave-
guide.

II. LocaLizep MODELS

The localized depletion models for Schottky contact
microstrip and CPW are illustrated in Figs. 1 and 2,
respectively. By setting the conductivity in region III of
Fig. 1 and that in region IV of Fig. 2 to zero, the localized
models will be reduced to the conventional MIS or layered
models.

Obviously, the boundaries of the depletion region in
actual devices are not straight lines but are curved. Such
curved boundaries can be found from solutions of a static
Poisson’s equation for a given bias condition. The present
algorithm can then be applied to such geometry. However,

0018-9480,/86,/1200-1483$01.00 ©



1484

the objective of the present paper is to study the effect of
localization. The essential feature can be found without
solving the structures with curved depletion boundaries.
Therefore, the localized depletion region is assumed to be
rectangular in shape.

Furthermore, we are also interested in the development
of low-loss slow-wave circuit elements. Schottky contacts
for both center and ground strips of the CPW are assumed
under the same dc bias conditions. It is found that the loss
in this CPW structure can be less than the case where only
the center conductor is a Schottky contact in the CPW.

III. DERIVATION OF THE MATRIX EQUATION

A. Theory

The conventional E,-H, formulation that results in a
homogeneous coupled symmetric matrix equation is
adopted in this paper [9], [11]. In the lossless case, the
finite-element method with the E,—H, formulation pro-
vides a variational solution. The matrix equation can be
derived by a functional followed by the Ritz approxima-
tion [11] or by weighted residual integration followed by
the Galerkin’s method [9]. It is possible to obtain a varia-
tional statement of the problem even for lossy structure by
dividing £, and H, components into real and imaginary
parts [12]. Alternatively, the three-vector H formulation
can be used [13], [14]. This includes mixed boundary
conditions, and caution must be exercised in treating the
singularity at the corner of conductor edge. The conven-
tional E,—H, formulation used here does not provide a
variational solution for the lossy system. The method used
here forces the residual to be zero by making it orthogonal
to each member of a complete set of the trial functions.
This method is one manifestation of the method of weighted
residuals, which does not require the existence of a varia-
tional principle [15], [16]. Not only is the method of
weighted residuals simple for implementation; in principle,
a systematic improvement in the accuracy of solution can
be obtained if enough terms of the trial functions are used.
Section IV-B discusses such improvements if one chooses
quadratic elements instead of bilinear elements in the lossy
waveguide system.

For purposes of clarity, a brief description of the de-
rived E_-H, formulation is shown in the Appendix.

B. Application of the Finite-Element Method

The important steps for the actual coding of the final
matrix equation obtained can be found in [17]. The
hierarchy of the program can accept any isoparametric
elements. In the present paper, we use four-node bilinear
and quadratic eight-node elements. Their differences in
terms of numerical results will be discussed.

By alternating E, and H, nodal variables in the column
vector X, the matrix 4 becomes a banded matrix (Appen-
dix). Finally, rows and columns corresponding to the
Dirichlet boundary conditions are deleted such that E,
and H_ vanish at electric and magnetic walls, respectively.
Therefore, the matrix 4 has dimension N X N, where N
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[9] together with experimental data [3] for an MIS CPW.
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Fig. 4. Plots of attenuanon constant as obtained by the present paper
and other theories such as mode-matching method [8], SDA [9], and
FEM [9] together with experimental data [3] for an MIS CPW.

equals (2M — L). M is the total number of nodes and L
stands for the sum of the total number of nodes located on
electric or magnetic walls. The complex root of the equa-
tion, det(4) =0, is the solution for the propagation con-
stant. The real and imaginary parts of the propagation
constant correspond to the attenuation constant and slow-
wave factor, respectively.

IV. NuUMERICAL RESULTS

A. Validity Check

The present FEM code is applied to lossless printed line
structures, and excellent agreement has been obtained with
the available data, such as [18, fig. 2.7 and fig. 7.11]. For
the lossy layered case, Figs. 3 and 4 compare the results
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Fig. 6. Validity check of the results obtained by this paper and data in
literature [9]; attenuation constant versus frequency.

obtained by the present method as applied to the layered
structure and other existing data for MIS CPW slow-wave
propagation both theoretically and experimentally. The
small discrepancy among various methods may be attri-
buted to the CPW structure, which has a relatively high
aspect ratio (b/a), ie., 10, and a very thin insulating
region. This makes it difficult to find very accurate answers
over the frequency span of interest. In particular, it is well
known that the slender element may yield poor results in
FEM [19]. Owing to the fact that both the depletion and
the lossy semiconductor regions are extremely thin, it is
inevitable that slender elements exist if we do not use
higher order and finer elements. Therefore, we apply
quadratic eight-node elements, and a total of 96 nodes are
employed for this particular structure.

The case for MIS microstrip slow-wave propagation is
shown in Figs. 5 and 6, where the discretization based on
bilinear elements and a total of 36 nodes are sufficient to
match the data.

B. Bilinear Versus Quadratic Elements

Figs. 7 and 8 compare computational results for slow-
wave propagation in an MIS microstrip model based on

1485
. (1) and (2) & cl=e2=c3=12, e4=1 )
-g 100 4 s e1=12, e2=e3=4, rh=1
E frequency=.1 GHz
8]
>
=
7
=
o
@ (2
104 {3)
D (1) : bi-linear , Oi=.2m d2=2um 28=.imm
(2) : quadratic , 0i=.28 g2«Cunm 28=.imM
(3) : quadratic , Of=,25em d2=lum 2a=. 16w
1
I T L) + T h b
1072 2 1 1 10 1%2 10° 10
substrate conductivity /m

Fig. 7. Comparison of numerical results, slow-wave factor Versus micro-
strip substrate conductivity, based on gquadratic and bilinear elements.

t=
=
@ (1) d4=,20m d2=2um 28=.40sm : bi-linear
= (2) di=.20mm d2=2um 28« 10mem : quadratic
1 J(3) die.25em d2=ium 28=.16M : quadratic
=
2
2
2
=
@
]
by
o
1672
1073
l()"4 -3 T_3 Ll T T T e "
10 10 1 1 10 100 10 10
substrate conductivity S/m

Fig. 8. Comparison of numerical results, attenuation constant versus
microstrip substrate conductivity, based on quadratic and bilinear ele-
ments.

both bilinear and quadratic elements. Both the slow-wave
factor and the attenuation constant agree very well in low
substrate conductivity, say, less than 0.1 S/m.

When bilinear elements are used, the slow-wave factor
and the attenuation constant approach infinity as substrate
conductivity increases. Clearly this is nonphysical because
very high conducting substrate can be regarded as a metal
layer and the slow-wave factor should be brought down
when the substrate turns into metal. In fact, in the case of
quadratic elements, the slow-wave factor starts to decline
gradually and loss starts to increase again when substrate
conductivity is increased from approximately 500 S/m.
Similar comparative studies are performed for CPW local-
ized model. We also obtain similar phenomena in that
both the slow-wave factor and the attenuation constant
approach infinity when we employ bilinear elements and
increase substrate conductivity.

Another type of comparative study is performed, ie.,
numerical computations of the slow-wave factor and at-
tenuation constant versus frequency by applying both bi-
linear and quadratic elements on the same CPW structure.
The results are illustrated in Figs. 9 and 10. In these
figures, curves based on quadratic elements are identical to
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those used in Figs. 3 and 4. The solutions obtained by
means of quadratic elements are apparently much closer to
those obtained by other theoretical methods and experi-
ments. Additional . tudies on MIS microstrip also draw the
same conclusion.
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TABLEI
COMPARISON OF SLOW-WAVE PROPAGATION FOR LAYERED AND
LoCALIZED MICROSTRIP MODELS

(slow-wave factor, dB/mm}
01(S/m} 3
MODEL s3(s/m 5 20x10
Layered 0 (8.364661, ,0072815) {8.397601, .0019445)
5 (8.391247, ,0073026) (8.397601, .0019502}
Localized
ZOXILO3 (8.398345, .0067541) (8.399383, .0019613)

Conditions: ¢ =80 pm, d1 =250 pm, d2 =1 pm, el =12, 2 =¢3 =4,
€4 =1, 02 =04 =0 (microstrip). Frequency = 01 GHz.

Since the accuracy of employing the quadratic elements
in our particular application is confirmed, the rest of the
computations in the paper are based on quadratic ele-
ments, except the results shown in Figs. 11 and 12.

C. Effects of Localized Depletion Regions on Slow-Wave
Propagation

It is clear in Figs. 11 and 12 that the MIS layered model
is a good model for microstrip slow-wave propagation.
This conclusion is confirmed again by using quadratic
elements with improved accuracy. The solutions obtained
by layered and localized models are very close and cannot
be distinguished by plots. Table I shows how close the
solutions are under different combinations of conductivi-
ties. For the localized CPW model, the results shown in
Figs. 13 and 14 are rather interesting. Structure (2) has
about half the gap width of structure (1), and all the rest of
the conditions are almost the same. The conducting region
IV has a stronger influence on structure (2). A noticeable
transition region exists where loss starts to decline and the
slow-wave factor starts to change abruptly but settles
quickly as ¢, increases. The skin depth, which is inversely
proportional to the square root of the conductivity, is
relatively large in region IV, approximately 50 mm when o,
equals 0.1 S/m. The electromagnetic field penetrates re-
gion IV freely and interacts with it in terms of lossy
dielectric material. When o, is increased, say, to 10° S /m,
the skin depth is reduced to 50 pm. This is very close to
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the gap widths in structures (1) and (2). As a result, the
highly conducting region IV can in effect be replaced by a
piece of thin and imperfect metal inserted into the gap.
The loss introduced at higher values of o, is much more
closely related to skin-effect ohmic loss. Generally speak-
ing, we may separate the loss mechanism due to region IV
in the structure into dielectric loss and conductor loss. The
former increases as conductivity increases, and the latter
decreases as conductivity increases. Common waveguides
and transmission lines also exhibit similar loss behavior
[20].

The qualitative discussions can be readily extended to
obtain an equivalent transmission-line circuit representa-
tion of the localized CPW in Fig. 15. This empirical model
happens to be a slight modification of the analytical model
of the Schottky contact coplanar line based on semiem-
pirical considerations and is indeed identical if we com-
bine C; and C; into a single capacitor. Note that n our
localized CPW structure, semiconductor Schottky contacts
are under the metal strips. L, and R, represent the
inductance and resistance due to ohmic loss and skin loss
- per unit length, respectively. C, represents the capacitance
per unit length between center and ground strips in region
VI. C; represents the capacitance per unit length from the
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center strip to the edges of region IV and region 1. C,
represents the capacitance per unit length from the ground
strip to the other side of region IV and the edge of region
I1. Parallel R, and C, represent the circuit contribution of
region IV and part of region II. General discussions lead-
ing to the determination of these component values can be
found in [21] and [22].

Figs. 16 and 17 compare numerical results obtained by
layered and localized models for slow-wave propagation
on CPW’s. The localized model tends to show better
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to MMIC planar waveguide designs, e.g., coupled coplanar lines and
coupled lines with selective ion implantations, which add more degrees
of freedom to design slow-wave circuits.

performance, with more linear slow-wave characteristics
versus frequency and less loss at higher frequency in the
structure under analysis. It suggests that the structure with
Schottky contacts for all metal strips (Fig. 2) may become
a practical slow-wave configuration.

V. APPLICATIONS

Along with the study of the effects of the localized
depletion models on MMIC slow-wave circuits, a general-
purpose FEM program is developed for the analysis and
design of planar waveguides. Fig. 18 shows several possible
applications among a broad class of MMIC waveguides
that can be analyzed by extensions of the present code.
These structures cannot be modeled accurately by the MIS
layered model. The results we obtained from the analyses
of CPW and microstrip MMIC’s with localized models
suggest that we may tune the slow-wave circuit to meet
certain design specifications by selective ion implantations
on the locations proposed in Fig. 18, with appropriate
controls over doping concentration and geometry. A cer-
tain mode of propagation may be more subject to the
existing selective ion-implanted regions than another mode
of propagation, and the additional ion-implanted region
can enhance or reduce the loss associated with it depend-
ing on what the doping profile is.

VI. CONCLUSIONS

Extensive computer simulations employing FEM on
CPW and microstrip MMIC slow-wave structures are per-
formed to study the differences in slow-wave propagations
between the layered model commonly used in the past and
the localized model which is closer to physical situations.
The results show that the layered model is a good ap-
proximation for the microstrip case. On the other hand,

the localized model yields more accurate solutions for

Schottky CPW. It is also pointed out that higher order
elements improve solutions for the geometry under analy-
sis. The work can be extended to analyze and design more
complicated planar waveguides.

APPENDIX

In the homogeneous, isotropic, linear waveguide with
uniform cross section, the Maxwell’s equation can be rep-
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resented by
(9.~ YU)X (B £) == Jonanol H+ H) ()

(vz_ylz')x(ﬁt_i_ﬁz)=jw€re€0(E_‘)t+E_‘)z)‘ (2)
Note the following.

1) e/** and e~ " factors are assumed for a wave propa-
gatlng along the posmve z d1rect10n

2)E E+E H= H+H E = EZUZ,H HU U,
U and U are unit vectors along the x, y, and z direc-
thl’lS respectwely

Hv,= =U 8/8x+U a/dy.

4) p, and ¢, are, respectwely, the free-space perme-
ability and permittivity, while p,, and €,, are the relative
permeability and relative dielectric constant, respectively.
Subscript e denotes element number e associated with
subdomain 2, of the entire waveguide cross section region
Q, which contams N, subdomains.

By defining the inner product as (R S) fQR S dxdy
and test functions P= PU and P =0 on the magnetic
wall and Q QU and Q=0 on the electric wall, one

obtains

N, N,
(Et,VtXP) = Z —jwnu‘relu‘O( z’P) (3)
e=1 e=1
N, N, oo
(H,9,%0)= ¥ + joeso(£.0) @
e=1 e=1

satisfying all the necessary boundary conditions.

Now we can derive expressions for H and E from (1)
and (2) and substitute these into (3) and (4) to eliminate
variables H and E To obtain an FEM representation of
the boundary-value problem, we set

M
U= 3wy
J=1
M
V=2 oW
Jj=1

where W™ and W are shape functions at the jth node. M
is the total number of nodes. Here, we use normalized
variables U =\/u—0 H, and V=\/e—(; E.. Note that u,=0 if
the rth node is on the magnetic wall and v, = 0 if the sth
node is on the electric wall.

Next, we expand P and Q in terms of shape function
W™ and WS

P

It

M
X pW
J=1
M
= X W
=1

where W,"(x,, y,) = 0 for i =1, M if the rth node is on the
magnetic wall, and W7(x, y,)=0 for i=1, M if the sth
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node is on the electric wall

1 2
_ Kyxnr  Kigsen

3 4
L Kixn  Kiscu

K= [{p.yWrv /K - kW) dxdy ()

K4 = -/Q{ ErevtI/Vie"7tVVje/I(e2 - CrgVVieVVje} dxdy (6)

(™

K2=j;2{+ijV;mmXV,VI§e/wa} dxdy

= [{~ v e x v /oKl | dedy

where K2 = kip €, +v% ko=27/Ag, and C =
ity of hght

It can be shown that the matrix 4 is symmetric. The
rows and columns corresponding to the nodes on magnetic
walls and electric walls are deleted. Before the final assem-
bly of the matrix A4, the node variables are alternated and
the column vector X has elements arranged in the follow-
ing way: uy,0q, Uy, Uy5+ -, etc. This results in a banded
matrix A for saving computer storage.

the veloc-
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